
IRQ Suspension: a new,
efficient mechanism for packet

delivery.
Joe Damato

jdamato@fastly.com
Netdev 0x19

mailto:jdamato@fastly.com

Hi, my name is Joe.

I work at Fastly.

My opinions are my own.

Netdev 0x18 Tutorial

Real world tips, tricks, and notes
of using epoll-based busy
polling to reduce latency

https://netdevconf.info/0x18/sessions/tutorial/real-world-tips-tricks-and-notes-of-using-epoll-based-busy-polling-to-reduce-latency.html
https://netdevconf.info/0x18/sessions/tutorial/real-world-tips-tricks-and-notes-of-using-epoll-based-busy-polling-to-reduce-latency.html
https://netdevconf.info/0x18/sessions/tutorial/real-world-tips-tricks-and-notes-of-using-epoll-based-busy-polling-to-reduce-latency.html

kernel

user

NAPI

File descriptors

app

epoll_wait

1. NAPI runs asynchronously; it is triggered by data arrival

2. Network stack
runs and attaches

data to file
descriptors

1. App calls epoll_wait, asking “which file
descriptors are ready?”

2. epoll_wait computes which
file descriptors are ready

3. Ready file descriptors

We’ll assume this all happens on the same CPU

epoll + SO_INCOMING_NAPI_ID

kernel

user

NAPI

File descriptors

app

epoll_wait

2. NAPI runs synchronously; it is triggered by epoll_wait

3. Network stack
runs and attaches

data to file
descriptors

1. App calls epoll_wait, asking “which file
descriptors are ready?”

4. Ready file descriptors

This is all happening on the same CPU

However…

IRQs are still generated

kernel

userFile descriptors

app

epoll_wait

1. App calls epoll_wait, asking “which file
descriptors are ready?”

This is all happening on the same CPU

IRQ

Worst case:

● Burning 100% CPU when
there’s no work

● When there is work, IRQs
interfere

IRQ suspension exists to
help solve this problem.

3 part problem

1. Inherent tradeoff between CPU usage and
network processing latency.

 Spend more CPU cycles to reduce latency

 Or

 Increase latency to save CPU cycles.

2. Device IRQs can interfere with network
processing leading to efficiency loss
due to suboptimal CPU cache usage.

3. Existing mechanisms are:
- device specific (HW IRQ coalescing)
- Too coarse grained (NIC wide)

And

Picking the “right” values is hard with dynamic
network traffic load.

Two existing NIC wide mechanisms I stumbled
upon are:

- defer_hard_irqs
- gro_flush_timeout

defer_hard_irqs

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=6f8b12d661d09b488b9ac879b8eafbd2cc4a1450

gro_flush_timeout

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=3b47d30396bae4f0bd1ff0dbcd7c4f5077e7df4e

gro_flush_timeout

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=3b47d30396bae4f0bd1ff0dbcd7c4f5077e7df4e

Changing
these values
on a machine
shows a clear

connection with
CPU usage.

It is extremely difficult to
choose the “right” value in

environments with dynamic
network traffic load.

And

NIC-wide settings affect all
apps using the NIC.

h2o/TLS HTTP caching Golang
daemons

administrative Rust code for compute

…. and more …

A Fastly computer looks like this

From last year:

I am hoping to work on:
napi_defer_hard_irqs
gro_flush_timeout

per NAPI

(via netdev-genl hopefully?)

Before we talk about IRQ
suspension, we first need to

touch on per-NAPI config
settings.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152

per-NAPI config
● defer_hard_irq and gro_flush_timeout

become configurable per NAPI (via netlink)

● Allows for other settings to be configured per
NAPI (like IRQ suspension)

● Solves the interface-wide config problem

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152

per-NAPI config

● ena
● gve
● bnxt
● tg3
● tsnep
● e1000 /

e1000e

● ice
● igc
● mlx4
● mlx5
● fbnic
● virtio_net
● igb (soon?)

Several drivers support per-NAPI config:

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152
https://lore.kernel.org/netdev/IA1PR11MB6241B773BF4CDC93C36DC9408BCC2@IA1PR11MB6241.namprd11.prod.outlook.com/T/#m31d85bfd2e0ad64d73d52118cf8a0fc5e9291b2d

per-NAPI config

However …

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152

per-NAPI config
per-NAPI config settings on those devices
do not necessarily persist between NAPI
teardown and creation (for example: queue
resize).

Only a subset of those drivers support
persistent NAPI config.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152

Persistent per-NAPI config
Persistent per-NAPI config needs to be supported by the
driver with a call to netif_napi_add_config. Check kernel
docs.

Currently supported by: Soon to be supported by:
- bnxt - igb (i think)
- ice
- idpf
- mlx4
- mlx5
- virtio_net

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/Documentation/networking/napi.rst#n174
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/Documentation/networking/napi.rst#n174
https://lore.kernel.org/netdev/IA1PR11MB6241B773BF4CDC93C36DC9408BCC2@IA1PR11MB6241.namprd11.prod.outlook.com/T/#m31d85bfd2e0ad64d73d52118cf8a0fc5e9291b2d

Persistent per-NAPI config is not
required for setting
defer_hard_irqs or
irq_suspend_timeout, but it is
helpful.

I hope to add persistent
per-NAPI config support to
more drivers as I have time.

An example

1. Create a custom RSS context which
distributes flows to queues 0-7.

2. Attach a filtering rule to steer incoming tcp4
flows on port 80 to the custom context.

3. Netlink is used to configure the NAPIs for
queues 0-7 to defer hardware IRQs.

Example, steps 1 & 2:

Example, step 3:

$./tools/net/ynl/pyynl/cli.py \
--spec Documentation/netlink/specs/netdev.yaml \
--do queue-get \
--json='{"ifindex": 7, "id": 0, "type": "rx"}'

{'id': 0, 'ifindex': 7, 'napi-id': 8392, 'type': 'rx'}

Get the NAPI ID associated with queue 0:

Example, step 3:
$./tools/net/ynl/pyynl/cli.py \
--spec Documentation/netlink/specs/netdev.yaml \
--do napi-get --json='{"id": 8392}'

{'defer-hard-irqs': 0,
 'gro-flush-timeout': 0,
 'id': 8392,
 'ifindex': 7,
 'irq': 327}

Get current settings for NAPI ID 8392:

Example, step 3:

$./tools/net/ynl/pyynl/cli.py \
--spec Documentation/netlink/specs/netdev.yaml \
--do napi-set \
--json='{"id": 8392, "defer-hard-irqs": 10,
"gro-flush-timeout": 20000}'

Set custom settings for NAPI ID 8392:

And repeat with queues 1-7 using the
python CLI as shown….

Or:

Programmatically with libynl, which
now has a make target.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/tools/net/ynl
https://lore.kernel.org/lkml/cover.1736343575.git.jstancek@redhat.com/

Worth noting:

Persistent per-NAPI configuration persists NAPI
IDs, which is helpful for applications using
SO_INCOMING_NAPI_ID.

So, now that we can configure things on a
per-NAPI basis it is possible to add new
per-NAPI features…

Like IRQ suspension.

What is IRQ suspension?

https://dl.acm.org/doi/10.1145/3626780

It is a mechanism which allows userland
apps to drive network processing (via epoll)
without interruption from device IRQs until:

1. Polling for network data on a NAPI finds
no data, or

2. The irq suspension timeout is triggered

Think of it as a way to balance CPU consumption
with network processing latency:

● When network traffic is high, IRQs are
suspended so the userland app can run
without interruption.

● When network traffic is low, IRQs are
automatically re-enabled allowing userland
apps to sleep, saving CPU cycles.

The cover letter of the series provides
a lot of detail on the implementation
and performance results of the code
available in kernel 6.13+.

https://lore.kernel.org/netdev/20241109050245.191288-1-jdamato@fastly.com/#t

The paper which motivated the work was
written by Peter Cai and Martin Karsten
from the University of Waterloo.

The paper provides the background,
measurement methodology, and
comparison with other existing
mechanisms.

https://dl.acm.org/doi/pdf/10.1145/3626780
https://dl.acm.org/doi/pdf/10.1145/3626780

How and when can IRQ suspension
be used?

Check the kernel documentation.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/Documentation/networking/napi.rst#n348

Minimum requirements

1. The userland application is a network dominant
application which uses epoll.

2. The NIC driver supports per-NAPI configuration
configurable via netlink. Persistence is not necessary,
but a nice to have.

3. Kernel 6.13+ is being used.

Optional
1. The userland application already uses SO_INCOMING_NAPI_ID

to distribute incoming connections to worker threads.

If not, it’ll need to be modified to do so.

2. NIC hardware supports ntuple filters to steer network flows to the
queues which will use IRQ suspension.

Optional, but helpful if the system runs many different apps and
only a subset of RX queues will be dedicated to the network
dominant application.

https://netdevconf.info/0x18/docs/netdev-0x18-paper10-talk-slides/Real%20world%20tips,%20tricks,%20and%20notes%20of%20using%20epoll-based%20busy%20polling%20v2.pdf

Implementation
1. Optional: ntuple filters to direct flows to specific queues.

2. Userland application is modified to use:
a. epoll_wait, noting that:

i. max_events controls the maximum number of events userland
will process per call and is closely related to the
irq-suspend-timeout

ii. A timeout of -1 can be used; if events are found they are returned
to userland, otherwise the application can sleep saving CPU
cycles.

b. SO_INCOMING_NAPI_ID to distribute incoming connections to epoll
loops such that each epoll loop only has incoming connections from
the same NAPI ID.

https://man7.org/linux/man-pages/man2/epoll_wait.2.html
https://netdevconf.info/0x18/docs/netdev-0x18-paper10-talk-slides/Real%20world%20tips,%20tricks,%20and%20notes%20of%20using%20epoll-based%20busy%20polling%20v2.pdf
https://netdevconf.info/0x18/docs/netdev-0x18-paper10-talk-slides/Real%20world%20tips,%20tricks,%20and%20notes%20of%20using%20epoll-based%20busy%20polling%20v2.pdf

Implementation
3. The epoll EPIOCSPARAMS ioctl is used for each epoll loop to set:

a. busy_poll_usecs = 0
b. busy_poll_budget = 64 (or less)
c. prefer_busy_poll = true

4. Using the python CLI or libynl, for each NAPI associated with a
queue where a relevant network flow will arrive set:
a. defer-hard-irqs to a low value (e.g. 10)
b. gro-flush-timeout to a low value (e.g. 20,000)
c. irq-suspend-timeout to the maximum time in nanoseconds that

IRQs can be suspended for – typically the maximum time the
application needs to process events retrieved from epoll_wait.

https://man7.org/linux/man-pages/man2/ioctl_eventpoll.2.html

Implementation Examples

Implementation example

A simple epoll_wait busy poll example which uses the
EPIOCSPARAMS ioctl and libynl to set irq-suspend-timeout, see the
selftest in the kernel:

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/
tree/tools/testing/selftests/net/busy_poller.c

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/tools/testing/selftests/net/busy_poller.c
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/tools/testing/selftests/net/busy_poller.c

Implementation example
Memcached already uses epoll_wait and supports
SO_INCOMING_NAPI_ID (step 2).

Martin wrote a patch to add support for the epoll EPIOCSPARAMS
ioctl (step 3), see:

https://raw.githubusercontent.com/martinkarsten/irqsuspend/main/pa
tches/memcached.patch

Note that the irq-suspend-timeout and other parameters must be set
manually using the python CLI (step 4).

https://memcached.org/
https://raw.githubusercontent.com/martinkarsten/irqsuspend/main/patches/memcached.patch
https://raw.githubusercontent.com/martinkarsten/irqsuspend/main/patches/memcached.patch

Implementation example

For an example implementation that is in
progress which uses libynl and supports
multiple interfaces, see:

https://github.com/h2o/h2o/pull/3462

https://github.com/h2o/h2o/pull/3462

What is the performance impact?

Performance impact

Full details about test environment, test
scenarios, versions of everything, patches,
scripts, etc are covered in detail in the cover
letter for the series.

https://lore.kernel.org/netdev/20241109050245.191288-1-jdamato@fastly.com/#t
https://lore.kernel.org/netdev/20241109050245.191288-1-jdamato@fastly.com/#t

Performance impact
But the high level summary:

- We tested memcached with mutilate
- Different configurations of defer-hard-irqs,

busy polling, and “regular” NAPI
processing

- Varying traffic levels

https://github.com/leverich/mutilate

Performance impact
Low network load - full data

Performance impact
Low network load - selected data

- suspend10 uses much less CPU than full busy
polling for comparable latency

- suspend10 uses slightly more CPU than regular
NAPI processing, but at ~half the latency

Performance impact
Max network load - full data

Performance impact
Max network load - selected data

- suspend10 has ~14% more application queries per
second than regular NAPI processing and better
latency.

- suspend10 uses the same CPU as full busy polling with
comparable latency.

Performance impact
Summary

- At low load IRQ suspension has:
- comparable latency to full busy polling, but with much

less CPU usage.
- Slightly higher CPU than regular NAPI processing, but

half the latency.

- At maximum load IRQ suspension has:
- better processing efficiency than regular NAPI processing

(higher application QPS).
- Comparable latency to full busy polling.

In conclusion:

IRQ suspension provides a mechanism for
reducing CPU usage at low network load
while providing low latency at maximum
network load, automatically.

?

