IRQ Suspension: a new,
efficient mechanism for packet
delivery.

Joe Damato
Jdamato@fastly.com
Netdev 0x19

mailto:jdamato@fastly.com

Hi, my name is Joe.
| work at Fastly.

My opinions are my own.

Netdev 0x18 Tutorial

Real world tips, tricks, and notes
of using epoll-based busy
polling to reduce latency

https://netdevconf.info/0x18/sessions/tutorial/real-world-tips-tricks-and-notes-of-using-epoll-based-busy-polling-to-reduce-latency.html
https://netdevconf.info/0x18/sessions/tutorial/real-world-tips-tricks-and-notes-of-using-epoll-based-busy-polling-to-reduce-latency.html
https://netdevconf.info/0x18/sessions/tutorial/real-world-tips-tricks-and-notes-of-using-epoll-based-busy-polling-to-reduce-latency.html

1. App calls epoll_wait, asking “which file
descriptors are ready?”

File descriptors !

Tmcoooocoo=

data to file
descriptors

A
runs and attaches ;

2. epoll_wait computes which
file descriptors are ready

>

|
|
|
|
|
|
|
I
I
I 2. Network stack '
|
|
|
|
|
|
I
|
|
|
|
L

epoll + SO _INCOMING_NAPI D

T S—— |
I : ; I
| - |
I 1. App calls epoll_wait, asking “which file .
I . ” I
: File descriptors ? descriptors are ready? :
I i U Se r I
: i !
| ’ [
I 3. Network stack * : |
: runs and attaches !] i I
: data to file N : I
. descriptors :
|) I
: |
: R ; |
: |
| 2. NAPI runs synchronously; it is triggered by epoll_wait I
| kernel !
oo o o o e e e e o mm o e mm Em o o Em o e M EEm En B B EEm En B EEm SEm EEm M EEm Em B M Em Em Em o

This is all happening on the same CPU

7 EVERYBODY HAS A PLAN .. UNTIT™
THEY GET PUNCHED IN THE MOUTH!

However...

IRQs are still generated

File descriptors

—— B B B BN I T T A T T B B B

This is all happening on the same CPU

default_idle_call
do_idle
[cpu_startup_entry

Worst case:

e Burning 100% CPU when
there’'s no work

e \When there is work, IRQs
Interfere

IRQ suspension exists to
help solve this problem.

3 part problem

1. Inherent tradeoff between CPU usage and
network processing latency.

Spend more CPU cycles to reduce latency

Or

Increase latency to save CPU cycles.

2. Device IRQs can interfere with network
processing leading to efficiency loss
due to suboptimal CPU cache usage.

3. Existing mechanisms are:
- device specific (HW IRQ coalescing)
- Too coarse grained (NIC wide)

And

Picking the “right” values is hard with dynamic
network traffic load.

Two existing NIC wide mechanisms | stumbled
upon are:

- defer hard irgs
- gro_flush_timeout

defer hard irgs

commit 6f8b12d661d09b488b9ac879b8eafbd2cc4alsS0
Author: Eric Dumazet <edumazet@google.com>
Date: Wed Apr 22 09:13:27 2020 -0700

net: napi: add hard irqgs deferral feature

This feature also can be used to work around some non-optimal NIC irq
coalescing strategies.

Having the ability to insert XX usec delays between each napi->poll()
can increase cache efficiency, since we increase batch sizes.

It also keeps serving cpus not idle too long, reducing tail latencies.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=6f8b12d661d09b488b9ac879b8eafbd2cc4a1450

gro_flush_timeout

commit 3b47d30396bae4f@Obdlff@dbcd7c4f5077e7df4e
Author: Eric Dumazet <edumazet@google.com>
Date: Thu Nov 6 21:09:44 2014 -0800

net: gro: add a per device gro flush timer

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=3b47d30396bae4f0bd1ff0dbcd7c4f5077e7df4e

gro_flush_timeout

Setting a timer of 2000 nsec is enough to increase GRO packet sizes
and reduce number of ACK packets. (811/19.2 = 42)

Receiver performs less calls to upper stacks, less wakes up.
This also reduces cpu usage on the sender, as it receives less ACK
packets.

Note that reducing number of wakes up increases cpu efficiency, but can
decrease QPS, as applications wont have the chance to warmup cpu caches
doing a partial read of RPC requests/answers if they fit in one skb.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=3b47d30396bae4f0bd1ff0dbcd7c4f5077e7df4e

gro timer + defer hard irgs

Changing
these values
e ON @ machine
shows a clear
~e=..._____ connection with
-7 777" CPU usage.

CCCCCCCC

It is extremely difficult to
choose the “right” value In
environments with dynamic
network traffic load.

And

NIC-wide settings affect all
apps using the NIC.

A Fastly computer looks like this

From last year:

| am hoping to work on:

napi_defer hard irgs
gro_flush_timeout

per NAPI

(via netdev-genl hopefully?)

Before we talk about IRQ
suspension, we first need to

touch on per-NAPI confia
settings.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152

per-NAPI| config

e defer hard irg and gro_flush_timeout
become configurable per NAPI (via netlink)

e Allows for other settings to be configured per
NAPI (like IRQ suspension)

e Solves the interface-wide config problem

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152

per-NAPI| config

Several drivers support per-NAPI config:

® eéna o !ce

e gve ® igcC

e bnxt e mix4

o tg3 e mix5

e tsnep e fbnic

e 1000/ e Vvirtio net
e1000e e igb (soon?)

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152
https://lore.kernel.org/netdev/IA1PR11MB6241B773BF4CDC93C36DC9408BCC2@IA1PR11MB6241.namprd11.prod.outlook.com/T/#m31d85bfd2e0ad64d73d52118cf8a0fc5e9291b2d

per-NAPI| config

However ...

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152

per-NAPI| config

per-NAPI config settings on those devices
do not necessarily persist between NAPI
teardown and creation (for example: queue
resize).

Only a subset of those drivers support
persistent NAPI config.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152

Persistent per-NAPI config

Persistent per-NAPI config needs to be supported by the
driver with a call to netif _napi_add_ config. Check kernel
docs.

Currently supported by: Soon to be supported by:
- bnxt - igb (i_think)
- Ice

- idpf

- mix4

- mix5

- virtio_net

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=5bedbfc16552b2284863c7e06bc0846554743152
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/Documentation/networking/napi.rst#n174
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/Documentation/networking/napi.rst#n174
https://lore.kernel.org/netdev/IA1PR11MB6241B773BF4CDC93C36DC9408BCC2@IA1PR11MB6241.namprd11.prod.outlook.com/T/#m31d85bfd2e0ad64d73d52118cf8a0fc5e9291b2d

Persistent per-NAPI config is not
required for setting

defer hard irgs or

Irqg suspend timeout, but itis
helpful.

| hope to add persistent
per-NAPI config support to
more drivers as | have time.

An example

1. Create a custom RSS context which
distributes flows to queues 0-7.

2. Attach a filtering rule to steer incoming tcp4
flows on port 80 to the custom context.

3. Netlink is used to configure the NAPIs for
queues 0-7 to defer hardware IRQs.

Example, steps 1 & 2:

#!/bin/bash
DEV=eth®

create a custom RSS context which sends all flows to queue 0-7, this 1s
context 1

sudo ethtool -X $DEV weight 1 1 1 1 1 1 1 1 context new

add a rule to send all tcp4 flows with a dst-port of 8@ to the queues 1in
RSS context 1 (e.g. queues 0-7)
sudo ethtool -U $DEV flow-type tcp4 dst-port 80 context 1

Example, step 3:

Get the NAPI ID associated with queue O:

$./tools/net/ynl/pyynl/cli.py \

--spec Documentation/netlink/specs/netdev.yami \
--do queue-get \

--json="{"ifindex": 7, "id": 0, "type": "rx"}'

{id": 0, "ifindex": 7, type': '’}

Example, step 3:

Get current settings for NAPI ID 8392:

$./tools/net/ynl/pyynl/cli.py \
--spec Documentation/netlink/specs/netdev.yaml \
--do napi-get --json="{"id": 8392}'

{ " 0,

) "0,
'id": 8392,

'ifindex’: 7,

'irq": 327}

Example, step 3:
Set custom settings for NAPI ID 8392:

$./tools/net/ynl/pyynl/cli.py \

--spec Documentation/netlink/specs/netdev.yaml \
--do napi-set \

--json="{"id": 8392, " " 10,

" ". 20000}

And repeat with queues 1-7 using the
python CLI| as shown....

Or:

Programmatically with libynl, which
now has a make target.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/tools/net/ynl
https://lore.kernel.org/lkml/cover.1736343575.git.jstancek@redhat.com/

Worth noting:

Persistent per-NAPI configuration persists NAPI
IDs, which is helpful for applications using
SO _INCOMING_ NAPI _ID.

S0, now that we can configure things on a
per-NAPI basis it is possible to add new
per-NAPI features...

Like IRQ suspension.

What is IRQ suspension?

https://dl.acm.org/doi/10.1145/3626780

It is a mechanism which allows userland
apps to drive network processing (via epoll)
without interruption from device IRQs until:

1. Polling for network data on a NAPI finds
no data, or

2. The irqg suspension timeout is triggered

Think of it as a way to balance CPU consumption
with network processing latency:

e \When network traffic is high, IRQs are
suspended so the userland app can run
without interruption.

e \When network traffic is low, IRQs are
automatically re-enabled allowing userland
apps to sleep, saving CPU cycles.

The cover letter of the series provides
a lot of detail on the implementation
and performance results of the code
avallable in kernel 6.13+.

https://lore.kernel.org/netdev/20241109050245.191288-1-jdamato@fastly.com/#t

The paper which motivated the work was
written by Peter Cai and Martin Karsten
from the University of Waterloo.

The paper provides the background,
measurement methodology, and
comparison with other existing
mechanisms.

https://dl.acm.org/doi/pdf/10.1145/3626780
https://dl.acm.org/doi/pdf/10.1145/3626780

How and when can IRQ suspension
be used?

Check the kernel documentation.

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/Documentation/networking/napi.rst#n348

Minimum requirements

1. The userland application is a network dominant
application which uses epoll.
2. The NIC driver supports per-NAPI configuration

configurable via netlink. Persistence is not necessary,
but a nice to have.

3. Kernel 6.13+ is being used.

Optional

1. The userland application already uses SO _INCOMING_NAPI_ID
to distribute incoming connections to worker threads.

If not, it'll need to be modified to do so.

2. NIC hardware supports ntuple filters to steer network flows to the
gueues which will use IRQ suspension.

Optional, but helpful if the system runs many different apps and
only a subset of RX queues will be dedicated to the network

dominant application.

https://netdevconf.info/0x18/docs/netdev-0x18-paper10-talk-slides/Real%20world%20tips,%20tricks,%20and%20notes%20of%20using%20epoll-based%20busy%20polling%20v2.pdf

Implementation

1. Optional: ntuple filters to direct flows to specific queues.

2. Userland application is modified to use:
a. epoll_wait, noting that:

I. max_events controls the maximum number of events userland
will process per call and is closely related to the
irg-suspend-timeout

ii. Atimeout of -1 can be used; if events are found they are returned
to userland, otherwise the application can sleep saving CPU
cycles.

b. SO INCOMING NAPI ID to distribute incoming connections to epoll
loops such that each epoll loop only has incoming connections from
the same NAPI ID.

https://man7.org/linux/man-pages/man2/epoll_wait.2.html
https://netdevconf.info/0x18/docs/netdev-0x18-paper10-talk-slides/Real%20world%20tips,%20tricks,%20and%20notes%20of%20using%20epoll-based%20busy%20polling%20v2.pdf
https://netdevconf.info/0x18/docs/netdev-0x18-paper10-talk-slides/Real%20world%20tips,%20tricks,%20and%20notes%20of%20using%20epoll-based%20busy%20polling%20v2.pdf

Implementation

3.

The epoll EPIOCSPARAMS ioctl is used for each epoll loop to set:
a. busy poll usecs =0

b. busy poll budget =64 (or less)

c. prefer_busy poll = true

Using the python CLI or libynl, for each NAPI associated with a

queue where a relevant network flow will arrive set:

a. defer-hard-irgs to a low value (e.g. 10)

b. gro-flush-timeout to a low value (e.g. 20,000)

c. irg-suspend-timeout to the maximum time in nanoseconds that
IRQs can be suspended for — typically the maximum time the
application needs to process events retrieved from epoll wait.

https://man7.org/linux/man-pages/man2/ioctl_eventpoll.2.html

Implementation Examples

Implementation example

A simple epoll_wait busy poll example which uses the
EPIOCSPARAMS ioctl and libynl to set irg-suspend-timeout, see the
selftest in the kernel:

https://web.qit.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.qit/
tree/tools/testing/selftests/net/busy poller.c

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/tools/testing/selftests/net/busy_poller.c
https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/tools/testing/selftests/net/busy_poller.c

Implementation example

Memcached already uses epoll _wait and supports
SO _INCOMING_NAPI _ID (step 2).

Martin wrote a patch to add support for the epoll EPIOCSPARAMS
loctl (step 3), see:

https://raw.qithubusercontent.com/martinkarsten/irgsuspend/main/pa
tches/memcached.patch

Note that the irg-suspend-timeout and other parameters must be set
manually using the python CLI (step 4).

https://memcached.org/
https://raw.githubusercontent.com/martinkarsten/irqsuspend/main/patches/memcached.patch
https://raw.githubusercontent.com/martinkarsten/irqsuspend/main/patches/memcached.patch

Implementation example

For an example implementation that is In
progress which uses libynl and supports
multiple interfaces, see:

https://github.com/h20/h20/pull/3462

https://github.com/h2o/h2o/pull/3462

What is the performance impact?

Performance impact

Full details about test environment, test
scenarios, versions of everything, patches,
scripts, etc are covered in detall in the cover

letter for the series.

https://lore.kernel.org/netdev/20241109050245.191288-1-jdamato@fastly.com/#t
https://lore.kernel.org/netdev/20241109050245.191288-1-jdamato@fastly.com/#t

Performance impact
But the high level summary:

- We tested memcached with mutilate
- Different configurations of defer-hard-irgs,

busy polling, and “regular” NAPI
processing

- Varying traffic levels

https://github.com/leverich/mutilate

Performance impact
Low network load - full data

testcase load gps avglat 95%lat 99%lat cpu cpq ipq
base 200K 199946 112 239 416 26 12973 11343
deferl®d 200K 199971 54 124 142 29 19412 17460
defer20 200K 199986 60 130 153 26 15644 14095
defer50 200K 200025 79 144 182 23 12122 11632
defer200 200K 199999 164 254 309 19 8923 9635
fullbusy 200K 199998 46 118 133 100 43658 23133
napibusy 200K 199983 100 237 277 56 24840 24716
suspendd 200K 200020 105 249 432 30 14264 11796
suspendl@ 200K 199950 53 123 141 32 19518 16903
suspend20 200K 200037 58 126 151 30 16426 14736
suspend50 200K 199961 73 136 177 26 13310 12633

suspend200 200K 199998 149 251 306 21 9566 10203

Performance impact

Low network load - selected data

testcase load gps avglat 95%lat 99%lat cpu cpq ipq

base 200K 199946 112 239 416 26 12973 11343
fullbusy 200K 199998 46 118 133 100 43658 23133
suspend10 200K 199950 53 123 141 32 19518 16903

- suspend10 uses much less CPU than full busy
polling for comparable latency

- suspend10 uses slightly more CPU than regular
NAPI processing, but at ~half the latency

Performance impact
Max network load - full data

testcase load gps avglat 95%lat 99%lat cpu Cpq ipq
base MAX 1037654 4184 5453 5810 100 8411 7938
deferld MAX 905607 4840 6151 6380 100 9639 8431
defer20 MAX 986463 4455 5594 5796 100 8848 8110
defer50 MAX 1077030 4000 5073 5299 100 8104 7920
defer200 MAX 1040728 4152 5385 5765 100 8379 7849
fullbusy MAX 1247536 3518 3935 3984 100 6998 7930
napibusy MAX 1136310 3799 7756 9964 100 7670 7877
suspendd MAX 1057509 4132 5724 6185 100 8253 7918
suspendl® MAX 1215147 3580 3957 4041 100 7185 7944
suspend20 MAX 1216469 3576 3953 3988 100 Z175 7950
suspend50 MAX 1215871 3577 3961 4075 100 7181 7949

suspend200 MAX 1216882 3556 3951 3988 100 7175 7955

Performance impact

Max network load - selected data

testcase load gps avglat 95%lat 99%lat cpu cpq ipq
base MAX 1037654 4184 5453 5810 100 8411 7938
fullbusy MAX 1247536 3518 3935 3984 100 6998 7930

suspend1l® MAX 1215147 3580 3957 4041

100 7185 7944
SUSPECIIU IV TIdS T~ 14 /0 111IVIEC dpplitdluull yucelicos pel

second than regular NAPI processing and better
latency.

suspend10 uses the same CPU as full busy polling with
comparable latency.

Performance impact

Summary

- Atlow load IRQ suspension has:
- comparable latency to full busy polling, but with much
less CPU usage.
- Slightly higher CPU than regular NAPI processing, but
half the latency.

- At maximum load IRQ suspension has:
- better processing efficiency than regular NAPI processing
(higher application QPS).
- Comparable latency to full busy polling.

In conclusion:

IRQ suspension provides a mechanism for
reducing CPU usage at low network load
while providing low latency at maximum
network load, automatically.

